[1] |
史亚杰, 陈艳秋. 航空安全信息管理的问题与对策[J]. 中国安全生产 科学技术, 2010, 6(3): 116-120.
|
[2] |
ZHANG X, ZHAO J B, LECUN Y. Character-level convolutional networks for text classification[C]//28th International Conference on Neural Information Processing Systems, September 4, 2015, Montreal, Quebec,Canada. Cambridge: MIT Press, 2015: 649-657.
|
[3] |
KOBAYASHI S. Contextual augmentation: data augmentation by words with paradigmatic relations[C]//2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers),June 1-6, 2018, New Orleans, Louisiana. Stroudsburg: Association for Computational Linguistics, 2018.
|
[4] |
YU A W, DOHAN D, LUONG M-T, et al QANet: combining local convolution with global self -attention for reading comprehension [C]//6th International Conference on Learning Representations Vancouver Convention Center, Vancouver, BC, Canada, April 30 - May 3, 2018.
|
[5] |
MIKOLOV T, CHEN K, CORRADO G, et al Efficient estimation of word representations in vector space[C]//International Conference on Learning Representations, Scottsdale, Arizona, USA, May 2-4, 2013.
|
[6] |
PETERS M E, NEUMANN M, IYYER M, et al Deep contextualized word representations[EB/OL]. (2018-05-23)[2020-07-02]. https://arxiv.org/pdf/1802.05365.pdf.
|
[7] |
RADFORD A, NARASIMHAN K, SALIMANS T, et al Improving language understanding by generative pre-training[EB/OL]. [2020-07-20]. https://www.cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf.
|
[8] |
DEVLIN J, CHANG M W, LEE K, et al BERT: Pre-training of deep bidirectional transformers for language understanding[C]//2019 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Minneapolis, MN, June 2-7, 2019: 4171-4186.
|
[9] |
JOACHIMS T. Text categorization with Support Vector Machines: learning with many relevant features[C]//10th European Conference on Machine Learning, Chemnitz, Germany, April 21-23, 1998: 137-142.
|
[10] |
WEI J, ZOU K. EDA: easy data augmentation techniques for boosting performance on text classification tasks[C]//2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China. Stroudsburg, PA, USA: Association for Computational Linguistics, 2019: 6382-6388.
|
[11] |
ZHAN L L. EDA_NLP_for_Chinese[EB/OL]. (2019-05-17) [2020-07-05]. https://github.com/zhanlaoban/eda_nlp_for_Chinese.
|
[12] |
TURC I, CHANG M W, LEE K, et al Well-read students learn better: on the importance of pre-training compact models[EB/OL]. (2019-09-25)[2020-03-09]. https://arxiv.org/abs/1908.08962.
|